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Abstract. The theory presented by Gerardy and Ausloos for the calculation of the linear optical response
of aggregates of spherical particles is analytically continued for absorbing embedding media. The method
is based on the calculation of the extinction rate by a single particle embedded in an absorbing matrix.
Explicit expressions for the extinction and scattering cross-sections are given. The method is applied to
calculate the energy losses in several organic matrices with embedded silver clusters. Comparison with
experimental data shows a very good agreement.

PACS. 78.20.Bh Theory, models, and numerical simulation – 78.66.Vs Small particles

1 Introduction

The interface region between metals and dielectrics is of
particular interest in the field of modern applied optical
spectroscopy. The possible excitation by optical means of
propagating or localized plasmon modes in the metal frac-
tion finds application in several surface-sensitive spectro-
scopic techniques, such as Surface Enhanced Raman Spec-
troscopy (SERS). Nowadays, these techniques are often
applied to investigate the properties of organic molecu-
lar adsorbates on metal surfaces. Naturally, the extended
π-electron-systems in these molecules may lead to signif-
icant absorption of the impinging light in the molecules.
Thus the metal fraction (which may be a semi-space with
a rough surface or simply an arrangement of metal clus-
ters) is in touch with an absorbing environment here. Even
when regarding the simplest case of a single spherical
metal cluster in a homogeneous environment, the classi-
cal formulation of Mie’s theory cannot be applied to the
description of the optical properties of these systems, due
to the absorption of the matrix.

Recently, we proposed a method to calculate the op-
tical extinction rate of a single particle embedded in an
absorbing medium [1]. Nevertheless, for real cluster mat-
ter, the single-particle assumption is certainly too crude,
so that we have to generalize this formalism to the calcula-
tion of the optical response of coupled cluster aggregates.
This is the aim of the present paper.

A general rigorous theory concerning optical properties
of aggregated metal spheres was presented in 1981 by Ger-
ardy and Ausloos [2]. It was shown that the effect of the
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electromagnetic interaction between the spheres may be
important in obtaining the optical spectra of the system.
The medium in which the clusters are immersed was sup-
posed to be non-absorbing. The authors have mentioned
that their method may also be applied for absorbing media
introducing a complex wave vector in the matrix. Never-
theless, only a part of the problem can be solved in this
way: one may find the electromagnetic fields in the matrix,
but the meaning of the optical extinction by the aggregate
in this case is not obvious and the explicit expressions for
the extinction rate have to be found. An attempt to take
into account absorption in the matrix was made also in [3]
by considering each particle of the assembly to be coated
with a shell of the matrix substance, which utilizes the
solution of the problem of scattering on a coated sphere
[4] and then implements the method of Gerardy and Aus-
loos. There are principal difficulties immediately seen if
applying this model to real systems. First, the size of the
shell may be empirically adjusted from the volume filling
factor of the clusters in the matrix, but it can be done
only in the case of uniformly distributed clusters. Second,
the geometry of coated spheres involves different scatter-
ing processes if compared with the spheres immersed in a
continuous absorbing host.

We will show that an explicit theoretical treatment
of cluster aggregates in an absorbing medium is possible
without the somewhat artificial assumption of aggregates
of coated spheres.

The standard procedure to find the extinction and the
scattering rate of the system of the particles in the case
of a non-absorbing host matrix is to integrate the cor-
responding Poynting vectors over the surface of a large
imaginary sphere, that encloses the entire assembly of the
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particles. The extinction is defined then as a sum of ab-
sorption and scattering rates given as the corresponding
integrals over the sphere surface. However, the sphere con-
struction is not possible for samples of limited size, for
example, for thin films. Moreover, for absorbing embed-
ding media this definition leads to an extinction value,
that depends on the size of the integration volume, which
obscures the physical meaning of the extinction in this
case.

In our work [1] we have defined the extinction rate
of the particle subsystem as the sum of absorption and
scattering rates in the particle volume referenced to the
matrix background. The rates were found by integrating
the corresponding Poynting vectors over the surface of the
particle. This provides a well-defined value for the particle
extinction, that depends only on the particle size and the
optical properties of the participating materials.

The main purpose of this work is the presentation of
the method and we will briefly show how this method can
be applied to calculate the optical energy losses in some
cluster+absorbing matrix systems.

2 Theoretical

We consider an assembly of N spherical particles embed-
ded in an absorbing matrix. The total electromagnetic
field in the matrix is presented as a linear superposition
of the incident (undisturbed by the presence of the parti-
cles) and the scattered fields. The incident light beam is
assumed to be already in the matrix. Thus we omit all en-
ergy losses caused by the scattering from the two surfaces
of the sample and neglect an interaction of the particles
with the back-reflected light beams. We do not consider
the possibility of optical excitation of longitudinal polar-
ization waves both in the particle and in the matrix, so
the wave field there is assumed to be transversal.

To find the scattered fields in the matrix, we follow
closely the procedure suggested in [2], whose brief descrip-
tion is given here. The electromagnetic field incident on
the surface of every single particle consists of the exter-
nal incident wave and of the waves scattered by the other
particles. Both the incident and the scattered fields and
the fields in the particles are expanded in spherical co-
ordinates in series of the spherical wave vector functions
mkl and nkl (the definitions given in [2] are used). These
expansions are written for every particle in the spherical
coordinate system with the origin at the center of the par-
ticle. The attenuation of waves by the absorption in the
matrix is totally described by introducing the complex
wave vector k (as mentioned in [2]) of the field and using
the complex argument kr in the definition of the spheri-
cal wave vector functions. Solving the ordinary boundary
conditions on the surface of every i-th particle requires
all field expansions to be transformed into the particles
coordinate system and gives rise to the system of linear
equations for the expansion coefficients of the scattered
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qp:

ciqp = Γ i
q


ai

0qp +
∑
l,m

∑
j �=i

(
cjlm�ij

lmqp + dj
lm


ij
lmqp

)
 , (1)

di
qp = ∆i

q


bi0qp +

∑
l,m

∑
j �=i

(
dj

lm�ij
lmqp + cjlm


ij
lmqp

)
 , (2)

where ai
0qp and bi0qp are the expansion coefficients of the

external incident field in the vicinity of the i-th particle,
Γ i

q and ∆i
q are its 2q-polar magnetic and electrical suscep-

tibilities, and �ij
lmqp and 
ijlmqp the elements of the trans-

formation matrices for the spherical wave vector functions
defined as

�ij
lmqp =

〈
mi

lm3|mj
qp1

〉
=

〈
ni

lm3|nj
qp1

〉
, (3)


ijlmqp =
〈
mi

lm3|nj
qp1

〉
=

〈
ni

lm3|mj
qp1

〉
. (4)

Here the functions mi
lm and ni

lm are defined in the co-
ordinate system of the i-th particle and the subscripts
1 or 3 determine which of the spherical Bessel functions
[5] jq(kr) or h(1)

q (kr) should be used in the radial part
of the generating function for the spherical wave vector
functions. The calculation of the elements of the transfor-
mation matrices is the main problem in finding the scat-
tered fields in the matrix and is discussed in detail in [2].
The summations over l ∈ [1,∞) and m ∈ [−l, l] in (1, 2)
are truncated, so that l ∈ [1, s], which provides an ap-
proximation to the coupling effect. The system (1, 2) is
reformulated and solved in a matrix form
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d =
(
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[b0 + 
c] , (6)

where the matrices Γ , ∆, 
, � have a dimension Ns(s+2)
for an assembly of N particles.

In our recent paper [1] we have defined the extinction
rate of the particle subsystem We as the sum of absorp-
tion and scattering rates in the particle volume referenced
to the matrix background. The absorption Wa and scat-
tering Ws rates of the particle subsystem were found by
integrating the corresponding Poynting vectors over the
surface of the particle, leading to the following expression
of the particle extinction:

We = Wa +Ws −Wi , (7)

where Wi is an integral of the Poynting vector of the inci-
dent (non-disturbed by the presence of the particle) elec-
tromagnetic wave over the particle surface and gives the
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absorption rate in the volume of the particle if filled with
the matrix. In the case of the assembly of the particles
we apply the same approach considering the entire aggre-
gate as a “composite particle”. So, an integration over the
surface of such a “composite particle” is mathematically
identical to an integration over the surface Si of every i-th
particle with the subsequent summation over all particles
of the assembly. Such an integration of the Poynting vec-
tor of the total electromagnetic field gives the absorption
rate in the assembly Wa

Wa = −1
2
Re

∑
i

∮
Si

[Et × H∗
t ] · −→ds , (8)

where −→ds is in the direction of an outward normal to the
surface, Re is the real part and the asterisk denotes the
complex conjugate. Considering the entire assembly as a
single “composite particle” requires to integrate the to-
tal scattered field over the whole “composite surface” and
gives the scattering rate by the assembly Ws

Ws = −1
2
Re

∑
i

∮
Si

[Es × H∗
s ] · −→ds . (9)

Integrating only the wave scattered by one particular
sphere over its surface and summation over all spheres
would lead to neglecting the electromagnetic interaction
between the particles. As can be seen from equations (7)
and (8, 9) the extinction rate of the assembly can be writ-
ten as
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After some extensive mathematics we find for the extinc-
tion rate
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and for the scattering rate
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Here ψq(ρ) = ρjq(ρ) and ξq(ρ) = ρh
(1)
q (ρ) are Ricatti-

Bessel functions [5], the prime stands for a derivative with
respect to the argument, and ρi = kRi is the complex size
parameter of the i-th particle of radius Ri in the matrix. I0
is the intensity of the external incident field at the origin of
the coordinate system, which may be chosen at the center
of one of the clusters. The attenuation of this field in the
matrix is described then by the complex phases in the
expansion coefficients ai

0qp and bi0qp (explicit expressions
are given in equations (56) in [2], only the complex wave
vector has to be introduced). Setting Ai

qp = 0 and Bi
qp = 0

in (11) and (12) leads to the expressions for the case of
the non-interacting particles in an absorbing host, as they
were given in [1]. On the other hand, for the case of a non-
absorbing host the expressions equivalent to equation (71)
in [2] for the extinction rate and equation (21) in [6] (see
also equation (14b) in [7]) for the scattering rate may be
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obtained from (11) and (12) by using the properties of the
Ricatti-Bessel functions for real arguments.

It is convenient to define the aggregate extinction
cross-section Ce = We/I0. Such a normalization provides
an independence of the cross-section on the aggregate po-
sition in the matrix, and the extinction rate of the cluster
assembly will be then given by a simple multiplication of
the extinction cross-section with the intensity of the inci-
dent light at the “aggregate origin” (actually, in the center
of the coordinate system in which the extinction rate (11)
is calculated).

If identical cluster aggregates are uniformly distributed
over the matrix volume an extinction coefficient αcl of
clusters in the matrix may be introduced similarly to the
case of separate clusters (see [1])

αcl = nCe , (19)

where n is the number density of aggregates. Then, the
total extinction coefficient of the system matrix+clusters
is given by

α = α0 + αcl , (20)

where α0 is the extinction coefficient of the pure matrix.
As mentioned in [1], such a description of the composite
medium (matrix + clusters) via macroscopic extinction
coefficient requires that the condition αD � 1 is satis-
fied, where D is the aggregate characteristic size in the
direction of the light propagation. If this is not the case,
nevertheless, the macroscopic extinction coefficient may
approximate the optical behavior of the system with a
good quality.

3 Applications

3.1 Ag-cluster chain in CuPc

To show an example of accounting both the absorption in
the host matrix and the coupling between the clusters, in
this section we present results of the calculation of the op-
tical extinction of a linear chain of four equal silver spher-
ical clusters embedded in CuPc matrix. The wave vector
of a plane monochromatic incident wave was assumed to
be perpendicular to the chain (normal incidence, if the
clusters were arranged in a layer). The diameters of the
clusters were taken to be 10 nm. The distance between the
clusters centers in the chain was 10.5 nm. The coupling ef-
fect was calculated up to the 26-polar order, i.e. the sums
in (11) were truncated at s = 6. We used the optical data
for silver from [8] and for CuPc from [9]. The spectra were
averaged for all polarization of the incident light. The re-
sults of the calculation are shown in Figure 1 in terms
of the extinction coefficient, i.e. αcl from (19), where the
number density of cluster aggregates corresponds to the
filling factor of silver in CuPc of about 20%. For the sake
of comparison we also show the extinction coefficient spec-
trum of separate silver clusters embedded in CuPc. There
is also a spectrum of the absorption coefficient of pure
CuPc placed in the same Figure.

10000 15000 20000 25000 30000 35000

0,0

2,0x10 5

4,0x10 5

6,0x10 5

8,0x10 5

1,0x10 6

1,2x10 6

1,4x10 6

1,6x10 6

α 
/c

m
-1

ν /cm-1

Fig. 1. Extinction coefficient of a linear chain of four spher-
ical silver clusters embedded in CuPc averaged over all po-
larizations of incident light (solid curve). Extinction coefficient
of separate spherical silver clusters embedded in CuPc (dashed
curve). Radii of clusters are 5 nm, the inter-center distances be-
tween neighboring clusters in the chain are 10.5 nm. Number
density of aggregates in the matrix corresponds to the volume
filling factor of silver of about 20%. Absorption coefficient of
the pure CuPc (dotted curve).

In the case of separate clusters the position of the main
plasmon resonance of Ag clusters is found at 22500 cm−1,
in the region of a small absorption of CuPc. The coupling
between clusters gives rise to a complex structure with
several resonances — at 12500 cm−1, at 18000 cm−1 and
at approximately 23000 cm−1.

It must be emphasized that the observed structure is
caused by both the electromagnetic coupling between clus-
ters and the behavior of the dielectrical functions of the
participating materials.

3.2 Pairs of Ag-clusters in
N,N’-dimethyl-3,4,9,10-perylenedicarboximid (PTCDI)

In this section we have applied the developed method to
calculate the optical response of silver clusters embedded
in a PTCDI matrix. We have approximated the electro-
magnetic coupling (up to the octupolar order) between
the clusters via pair interactions, where the diameter of
clusters in the pair was taken to be 10 nm and the spectra
were averaged over all directions of polarization of inci-
dence wave and over distances between centers of the clus-
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Fig. 2. Extinction coefficient of two spherical silver clusters
embedded in PTCDI (dashed-dotted curve). Radii of clusters
are 5 nm, the spectrum is averaged over the inter-center dis-
tances between neighboring clusters from 10 nm to 15 nm and
over all directions of polarization of incident light. Number
density of aggregates in the matrix corresponds to the volume
filling factor of silver of about 20%. Absorption coefficient of
the pure PTCDI (dashed curve). Total extinction coefficient of
the composite system clusters+matrix (solid curve).

ters from 10 nm up to 15 nm. The uniform distribution of
the inter-center distances was applied for the averaging.
Then, the extinction coefficient of clusters in the matrix
was calculated using equation (19) and the total extinction
coefficient from (20), where the number density of cluster
aggregates corresponded to the volume filling factor of sil-
ver of about 20%. In Figure 2 we present these results
together with the absorption coefficient of pure PTCDI.
The optical data from [9] were used for PTCDI.

3.3 Comparison with experimental results

In a previous publication, we have reported on the linear
optical properties (absorption behavior and Raman scat-
tering) of noble metal clusters incorporated into CuPc-
as well as PTCDI-matrices [9]. These samples had been
produced by thermal evaporation, so that the clusters ex-
hibit a random distribution of their sizes and distances.
It is of course not very probable to find linear 4-cluster
chains in such types of samples. Nevertheless even the
idealized geometry of a 4-cluster chain leads to a very
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Fig. 3. Comparison of the calculated total extinction coeffi-
cient of the composite system silver clusters+PTCDI matrix
(solid curve) with the experimental data (triangles).

important result: the possibility of absorption in a cop-
per phthalocyanine-silver composite at wavelength values
around 800 nm (12500 cm−1). This absorption is also
significant in the experiment (see [9]) and cannot be ex-
plained regarding single silver spheres in the quasi-static
approximation.

The simpler, but more realistic geometry of randomly
oriented pairs of clusters (Section 3.2) allows a straightfor-
ward comparison with experimental data. Figure 3 shows
the experimentally established extinction (absorption +
scattering) coefficient of a PTCDI-silver composite with
a silver filling factor of approximately 20% (taken from
[9]). This curve is compared with the calculated extinc-
tion coefficient from Figure 2. The maximum values of the
optical extinction coefficient are in excellent agreement.
Some discrepancies between calculation and experiment
occur for wave numbers around 30000 cm−1 and below
17000 cm−1. The latter are clearly due to the simplify-
ing assumption of uniformly sized spheres, as used in our
calculation, as well as to using the uniform inter-center
distances distribution for the averaging (Section 3.2). As
experimental cluster sizes ranged between diameters of 3
nm to approximately 20 nm, the sharp absorption feature
at 14000 cm−1 is expected to be superimposed with other
lines originating from other cluster sizes, thus explaining
the broad absorption flank as observed experimentally.
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The existence of sharp silver cluster absorption lines
at around 700 nm in wavelength (14000 cm−1) may be an
explanation for the high Surface Enhanced Raman Spec-
troscopy signals, which are obtained from such PTCDI-
silver composites at a Raman excitation line of 647 nm
(15500 cm−1). Indeed, the electrodynamic SERS theory
predicts a SERS efficiency which is inversely proportional
to the homogeneous linewidth of the cluster absorption
[9], which favors these sharp absorption features for appli-
cation in SERS experiments.

4 Conclusion

The main aim of this work was to present an algorithm
that allows the calculation of the full optical extinction
(absorption + scattering) rate of arbitrary aggregates of
spherical clusters in absorbing embedding media.

Our method is exact in the sense it is based on the
rigorous theory of Gerardy and Ausloos and uses the ex-
act analytical integration procedure to find the extinction
rate. In terms of the presented theory under the conditions
mentioned in Section 2, the full optical extinction coeffi-
cient of a matrix+cluster composite may be introduced as
in the case of a macroscopically homogeneous matrix. It is
calculated by adding the matrix absorption coefficient to
the extinction coefficient of the cluster aggregate, which
provides a relationship between experimental observables
(transmission, reflection, etc.) of the sample and the ag-
gregate extinction rate. The performed model calculations
show an astonishingly good agreement with experimental
results.

The advantages of our approach are, in our view, the
simplicity and “transparency” of the input and output
data. As input, we have the dielectric functions of the par-
ticipating materials and the geometry of the aggregates
(cluster sizes and distances). If a uniform distribution
of cluster aggregates in the host is assumed, the volume

filling factor of cluster material gives rise to the corre-
sponding number density, and as an output, we have the
absolute value of the effective extinction coefficient. In the
other case (the distribution of aggregates in the host is not
uniform, a layer of clusters embedded in a film, for exam-
ple), if aggregates positions in the matrix are known the
absolute rate of energy losses in the aggregate volume may
be calculated and the total energy losses in the system may
be estimated.

In contrast to simple mixing model approaches, scat-
tering losses are incorporated in our theory. On the other
hand, an integration of Poynting vector over particles sur-
faces may be crucial in a case of limited-size embedding
media and allows to avoid an empirical postulation of core-
shell particles to take into account the matrix absorption.
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